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Abstract 

The geometric theory of partial differential equations due to E. Cartan is applied to 
atomic systems in order to solve the many-body problems and to obtain the binding 
energiesofelectrons in an atom. The procedure consists in defining a Schr6dinger equation 
over an Euclidean patch which overlaps with other Euclidean patches in a specified 
way to form a manifold. If the energy of the system has to be a minimum, it is showxt 
using the Dirichlet principle that the coordinate systems are related by the Cauchy- 
Rierhann relations. The invariance of the Schr6dinger equations in the overlapping region 
kads to a nonlinear second-order equation which is invariant to automorphic trans- 
formations and whose solutions are doubly periodic functions. There are only two possible 
single-valued solutions to this nonlinear partial differential equation and these correspond 
to lattices of points in the complex space, which &~ (a) comers of an array of equilateral 
triangles, and (b)~..o~rners of an array of isosceles right-angled triangles. The first solution 
was used in an earlier work to derive many static properties of nuclei. In this paper it is 
shown that the second solution gives binding energies of atoms in agreement of about 
3~, for the few experimental points that are available and also in good agreement with 
the binding r of atoms obtained by the perturbation theory. It is also shown that 
this lattice under certain approximations is equivalent to a pure Coulomb law and the 
Bohr orbits of the hydrogen atom are correctly predicted. In obtaining the binding 
energies t~ r atoms, no free parameters are requ.~red in the theory, except for the value 
of the binding energy of the *He atom, as the theory is developed only for spinless systems. 
All other constants turn out to be fundamental constants. 

It  was shown in earlier papers (Ramanna, 1968; Ramanna & Jyothi, 
1969) that many of  the static properties of  nuclei could be accounted for by 
studying the differential geometry of  nuclear space using the geometric 
theory of  partial differential equations due to E. Cartan. This was done 
by considering a system of Schr6dinger equations, each representing a 
nucleon having its own Euclidean coordinate system. Two such equations 
are related to one another by the overlap of their respective coordinate 
systems, i.e. by an appropriately defined manifold. If in the region of 
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overlap, the coordinates of the two systems are related to one another by 
the Cauchy-Riemann relations, the energy of  the system in ground state 
can be obtained through the Dirichlet principle. The invariance of the 
equations in any two overlapping systems leads to a non-linear partial 
differential equation whose solutions are doubly periodic functions, giving 
rise to a specific geometry in complex space which determines the nature 
of  interaction responsible for the binding of the system. 

The method is an extremely general one and can be applied to any system 
obeying a set of Schr0dinger equations and the description of a specific 
system depends on the choice of  doubly-periodic functions satisfying the 
non-linear differential equation. In the case of nuclei in the ground state, 
for stable systems, these functions turned out to be equianharmonic 
Weierstrass functions, giving a geometry which leads to a lattice of points 
forming the corners of equilateral triangles in complex space and the static 
properties of nuclei were obtained by linear mapping of those complex 
points onto the real line (Ramanna & Jyothi, 1969). In this paper the same 
procedure is applied to a system of electrons held together in the Coulomb 
field of  a nucleus. We show that in this case, the mapping functions turn 
out to be simple Jacobian elliptic functions which lead to a lattice of points 
which are the corner of squares corresponding to the lemniscate Weierstrass 
functions. There are in fact only two distinct types of  mappings possible 
where the solutions are single-valued functions, and it seems that these 
lead respectively to the only known stable quantum systems, with two 
different laws of interaction, one electromagnetic and the other nuclear 
(strong interaction). 

It is shown in this paper that it is possible to predict the periodic table of 
elements and obtain the total binding energy of atoms directly without 
recourse to perturbation theory, and with only one constant, that being 
the binding energy of the electrons of the He atom. This fixed constant is 
required as the present theory is developed only for spinless systems. The 
agreement with the few experimental points is remarkable, the difference 
being of the order of 3 %. The predictions are also in good agreement with 
those based on the Thomas-Fermi model and the more recent calculation 
of  Foldy (1951). 

The principle of the new approach to thesolutionof many-body problems 
described here consists of looking at the many-body system simultaneously 
from several coordinate systems each of which can be mapped into one 
another by some appropriate functions. Any of the several coordinate 
systems can be chosen to be the basis of the description of the system. The 
fact that in each of the coordinate systems the same phenomena are 
observed, i.e. the description are invariant, leads to a correct description 
of  the system, if the appropriate mapping functions between the coordinate 
systems are known. 

Consider two SchrSdinger equations, one describing a proton and 
another an electron, each moving in a potential Vj and V2 respectively. 
Let the coordinate system of the proton be described by (x~,h) and that 
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o f  the electron by (x,, t,) where xt and tl are the space and time coordinates 
of the proton system and x, and t ,  similarly for the electron. The potentials 
Vt and V2arc in general functions of (xi, t~)and (x2,tz) respectively. We 
restrict the discussion to one-dimensional systems which in special cases 
correspond to spherically symmetrical systems. If m, and m2 are the masses 
of the proton and electron respectively, we have 

k 2 a 2 ~ ( x i ,  t,) ih a@, 
2m, ax| 2 + r t ( x | , t , ) ~ , ( x , ,  t ,)  = ~ ( x , , t , )  (I) 

ih a~z Fx h 2 a 2 @2(x,, t,) + v,(x2, t2) @,(x,, t,) = - a-~-~ ( 2, t2) (2) 
2m., Ox2' 

The coordinates xt, xz, t, and t, are related to one another thus. 
Let 

axt atl ax, = atl 
P = ax---22 = at---2 and q = c at, -CO-x~ 

which implies 

ap 1 aq and aq ! ap 
a~ "= ~at--, ax~ = ~a,, (3) 

We multiply all quantities involving time by c the velocity &light to make 
p and q dimensionless quantities. These relations as shown by Ramanna & 
Jyothi (1969) and in Appendix II ensure that the total interaction energy 
of the system is minimised. 

Let 
~2(x2, O = o,(x,, t,) @,(x,, t,) (4) 

where ~,(xl, tl) is some complex valued function ofxl and ti. In the following 
discussion we consider cases where o~ is purely a function of space only. 

Eliminating @~ and ~l by putting (3) and (4) in (I) and (2) and by separating 
the purely space-dependent part and the time-dependent part and setting 
them each equal to zero, we get (Appendix I) 

ltap   
P Ox-j -- 2 ~O~xl] -- ~ (m2 - m, p) [m, p '  - mz(p 2 + 2q 2)] 

2~ ap 4 
I~pqax, [mtp '  - m,(2P 2 + q'O] = +~(m+,, V2 - m, V ,p  2) (5) 

If the potentials V2 and gl are real, we can set the imaginary part ofequation 
(5) equal to 0, giving 

mlp3 _ m,(2p2 + q2) _ 0 (6) 
and 

a2p I(ap~ 2 .._, (m, --  m,P)  r_  . ,  
P ~ -- 2 I~O~] - z.c ~ t,,,, +, - m,CP 2 + 2q 2)I 

~ ( m ,  v2 "= - -mt  Vip 2) (7) 
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Eliminating q from (7) using (6) we get 

p82p l[Sp~ 2 2m2c2(mz-mmp)(3mz-mip) 

4 
(m2 r2 - m, f r,)  (s) 

Equation (8) is a non-linear differential equation which is invariant to 
automorphic transformations and whose solutions are usually doubly 
periodic functions (Davis, 1961). 

Let 1 
mz = pm~, where p = 1836 

We write 
mz V2 L ~ 2mr mz c 2 ~2e  2 
ml Vi " h2 and M = 4 (9) S 

where c is the velocity of  light and its value is taken to be 1. In the region 
of  invariance, we consider V2/VI to be a constant since both V, and V2 
measure the same potential except that they are measured in two different 
coordinate systems. Equation (8) becomes 

[ a ' p  l ( a p ~ ]  Z L C p - ~ , ) ( p - 3 ~ )  
- [ P ~ X - { ~ - ~ / J r -  s ( p - 2 ~ , ) ( f - s ) f f i ~  v, 00)  

We now show that under certain circumstances Vt approximates to an 
e2/xl law. 

We note that 
2L 1 L pan 
- ~  ffi: ~ and M-2 ~ 3 7o 

where 

and 

au (the radius of  the first Bohr orbit) = h2/mz e 2 

re (the classical electron radius) = e2/i~, c 2 

Let us assume that 

p ffi A exp(-p-- sn 4 ~ ]  dn4KX'~" 4- B (I 1) 

is a solution of  equation (10), where A and B are two constants chosen 
suitably, K is the complete elliptical integral of  the first type with modulus 
l /x/2 and n is an integer which as we see later corresponds to the various 
excited states with n = ! corresponding to the ground state. The elliptic 
functions 

snr4Kx, l ]dnr4~,  l] 
r n ~ .  ' ~2.i L n=.' W2 
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with modulus = k -- k' = sin45 ~ -- I/x/2 have been chosen as they generate 
alattice on the complex plane with its points forming the corners of  squares; 
any selection of  these points forming an isosceles right-angled triangle can 
be mapped on to a real line by means of  a single-valued analytical function. 
In fact triangles (Kober, 1957) with angles (a) ~r/2, ~r/4, r (b) 2~/3, ~r16, 
=/6, (c) ~/2, ~/3, ~/6 and (d) ~'/3, ~/3, ~'/3 are the only cases where a triangle 
can be mapped into a half-plane by an analytic function which is single- 
valued. The triangles of  the type (b), (c) and (d) can be arranged to form a 
lattice of  points which are the corners of  a Rhombus and the triangles of  
the type (a) form a lattice of  points which are the corners of  a square. The 
mapping corresponding to an equilateral triangle was used in the nuclear 
case and that of  a fight-angled isosceles triangle is used in the present study 
of atomic structure. 

As shown below, the choice of  the fight-angled isosceles triangle in the 
present case leads to the Bohr periodic table and predicts correctly the 
many-body binding energy of  atoms. Besides, under certain approxima- 
tions, it can be shown to lead to the usual Coulomb law of interaction. In 
view of  these successes and that of  the nuclear case where two states, one 
for a neutral particle and the other for a particle with a charge, are predicted, 
it seems reasonable to conjecture that the equilateral triangle lattice 
corresponds to strong interactions and the isosceles right-angled triangles 
to electromagnetic interactions. It is to be noted that these are the only two 
stable systems with two different kinds of  interaction. 

In equation (! i) since/~ ~ 1 we can approximate 

expl-psn4KXt dn 4K-x' to 1 4Kx' dn4KXt~ 

Considering only those values ofxl  for which the expansion 

U3 
snUdn U =  U -  -~ + "" 

is Valid and retaining terms of  first order only we can Write 

--4 K A  i~x , 
p =  - -  + A + B  

n~H 

The values of  A, B determine the nature of  the interaction and it is shown 
that for 

- L  
--4KAp ffi _ L__ and A + B--- 2M2 

n~u M 

i.e. for 

. . . .  Js=---~ 02) A 4KFMn~n !. 8KFron ~B and A + B ~ _ _  16ro 
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where S--/z(Vz/V,), Vt approximates to a e2/xl law. It is easily verified that 
2KAl~/na . = - M ( A  + B) and/~ ~: .4 + B. Also that 

B = : r ,  ( l -6 -Kl~)  (13) 

Substituting forp in equation (10), we get 

8Ka A2 tz2 ! n~. + A + B -  l~ I HO~H 

| n~u 

M V  t ~16K:A~l~2Xl 2 8KAIL(A + B) + (A + B) 2 - S} = - - f  l 

As I~.~(A+B) terms like A + B - 2 1  L, A + B - 3 / ~ ,  A + B - t ~  can be 
replaced by A + B in each case and we get 

8K2 A21z2 L {7-4KAI~c, ) 
n 2~u 2 ~ w'u k A + B 

MV'4KAluc'{ 4KAl~'q 2(A + B)) 
= e 2 n ~ .  ~ n~u 

"fhis simplifies to 

)) M V ' x ' (  4KAP'x' 2(A+ B)) M {4KA/~, _ 2(A + B = 

Since this is true for all xl ,  Vi = e~/xl. From equation (3) w~ have 

x2  J T 
Substituting forp  from equation (1 !) we get 

f X2 = = {Aexp[-I~sn(4Kxi/n~u)dn(4Kxl/n~H) ] + B} (14) 

from equations (12) and (13), it follows that B_~ .4 so that 

A/~ I -2n/~ 
V'S = A + B -~ 2B and 2-B[ = [2(K~---~+ 2n) < ! 

Since/L .~ 1, wecan approximate 

exp (-/~ sn 4Kx' dn4KX'~ to ( I -  t~sn 4Kx, dn 4~,~ 
\ ~ u  n~u ! n~u nclu ] 
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From equation (13) we get 

r dxi 
x2 = j (A 4-_ B) - A/~ sn (4Kx,/n~.) dn (4KxJn~.)  

viz. 

Since 

x2 - A + B [I - (AI~/A + B) sn (4Kx,/m.n) dn (4Kx,/n~.)] 

ABL A~ 
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we get 

i.e. 

1 A/L 4/Oq dn4KXt) dxl 
, , . . ,  

x t n~ .  Aix 4Kxt . 
x Z = V S  ~ ~;-Cnn~-~-+ Q (15) 

where Q is a constant of integration. 
Wc define the radius of the Bohr orbit as the distance between the origins 

of  the two overlapping coordinate systems measured in one of the systems: 
�9 If  (x2)x,.o is the distance measured in the x2 system for the point corre- 

sponding to xl = 0in the x, system and (xl)x2=o is the distance measured in 
the xl system for the point corresponding to x2 = 0 in the x2 system, then 
from equation (15) we have 

-Al~ m, n 
(xz)=,.o" $ 4K + Q 

and 

~ e ~  

{x,)=~.o A/~n~. r 4K 1 
,/s = - Q 

(xz)~,.o + (x~,~.o noe. A~, I" = - ~  ~ [, - ca L4~ (/,).,,.o1"1 
. ~n~n I J  

(16) 

The left-hand side of  this equation is 0, since the two distances measured 
in the two coordinate systems are equal and opposite except, for a normal- 
isation constant I/x/S.  That this constant is 1/x/S is seen from equation 
(11) where if xi = au, then 
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Since 

Lnaa J 

i.e. 4K/nc~u(xi}=,.o = 4nK, we get 

(xi) ,2-0 = nZau (17) 

which is the usual expression for the Bohr orbits. 
In the above discussion we have considered only two SchrSdinger 

equations, one representing a proton and the other an electron. We now 
extend it to a system which has many electrons around a central Coulomb 
field arising from the protons in the nucleus. We, therefore, have for the 
nucleus of the system with a charge Ze and mass Mn,~. 

h" a',kdx,, tD + V,(x~, t,)@,(x,, t~) = iti ak, tx 

and similar such equations for the other pairs between the nucleus and 
each of the other electrons. For each pair of electrons we have 

a@s h s a s @2(xz, tD + r,(x, ,  ts) @2(x2, tD = ih ~ (xs, tD 
2m Oxa 2 

h s a 2 ~3(X3, t3) 0~b3 
2m ax3 s + V3(x3, tD r = ih a ~  (x3, h) 

a@~,(x,,, 6,) li s 0 2 ~,(xN, t,,) + v,,(xN, t,,) @,,(xN, 6 , )  = ( l  8a) 
2m Oxt~ 2 atN 

where m is the mass of the electron. 
In this many-particle system, the physical meaning of x~, x2 etc. can be 

given the following interpretation. Equation (18a) represents the motion 
of the nucleus with the origin of the coordinate systems at some average 
point determined by all the other electrons in whose field the nucleus 
moves. Similarly (lgb) describes the motion of the first electron with 
the origin of coordinates at some average point determined by the nucleus 
and the several other electrons and so forth. Since the system is the same 
in whatever frame of reference it is described in, all the equations are 
invariant to the coordinate transformations. Considering only time- 
independent situations and following the same procedure described above, 
w e  get for the overlapping region between the first particle (nucleus) and 
the second particle (electron) the non-linear partial differential equation 

- [P t s  aSP'Sax, 2 21, ~- ] [11  [ap,z~ s]j_ L(pts_(~)- tt)(p,, - 3it) = MV,.(p~2 _ S) (lSb) 

where 
i~xt m 

P " = ~ '  " '  =Mo,---~ 
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For the overlap region between two electrons we note that p = 1. As before 
we assume 

=aXl ( 4gxi dn 4gx'~ P,z ~ - -  A,2 exp - /~ sn + B,2 nau n~'a ] 

a s a  solution for the overlap region between the nucleus and the first 
electron. In general for the ovi:rlap region between the first particle (nucleus) 
and the nth particle (electron), we assume 

= ~xi . [ 4Kxi dn 4Kx,~ 
P,s a-~H=Ajsexp~-ptsn na n hau l+BiN  

and for the overlap region between the second particle (electron) and the 
nth particle (electron) we have 

8x2 . / pZN = aXN = A2.exp ~-p, sn4KXa dn4KX2~ + B.N 

P2N has to satisfy the equation 

1 3) [ ~ P2N 1 
-/P2,, a-~,,~ - -  M V 2 s ( p 2 ~ v  - S) 09) 

, .  J 2) 
Since Pl = 1 as both particles are electrons and V2N --> - e Z / x 2  by putting 
these in equation (19) and equating coefficients of like powers in x:, we get 
A2N --~ 0, B2N --> 1 and xN = xz + C where C is a constant, giving a trans- 
lation of the coordinate systems for each of the electrons. 

From the following equations, since P,3 =P,2P23, 

axl ( -F  4Kx, dn4KXt~ ax-'2 = P,2 = A,2 exp t sn + Bl2 
n~'u no~u ] 

~x2 ( -Pl  sn 4Kx~ dn 4Kxz~ + B .  
OX 3 = P2:i = ,,423 exp g nau nan ! " 

(-/~ 4Kxt dn 4Kx,~ 
~x~aX--~i = P i 3  = A ,3exp  i sn nan nan 1 + Bi3 

it follows that 

l-/z / sn 4Kx, dn 4Kxl~ 
At3exp~ . t  nan nan / 

+ Bi3  

[ 4Kx| dn 4Kx,~ exp (_/~ | 4Kxz dn 4Kx2~ 
A,, Az3 exp ~-Pl sn nail nau ! sn nan nan ! 

+ B2, A,2 exp ( -p ,  sn4KX' dn 4 / ~ q  
nau na u ] 

+ 2 . ,  Bt2 exp (--/ti sn4KX2 dn4KX2~ + BI2 B23 
- n a  n n a  n ] 
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Since A~)= 0. 

As3 cxp (-F sn 4KXln~,u dn 4Kxl~_~ul + Bl~ 

( sn4-Kx' dn 4Kx' �9 = B2~ Alzexp - p  n,,u n~u ] + Biz B2j 

a i__, = = B , j  
Ai2 Biz 

As Bzs and hence Bz3 "-" 1, Al2 = A,3 = ...AtN and Bl~z = B | 3 . . .  = B l s ,  
therefore, the solutions for the different regions of overlap between the 
proton and the various electrons are identical. 

We now show that purely on the basis of the minimisation ofenergy, only 
certain points of the lattice can be considered for the purpose of their 
representation as possible stable states of the atom. In Fig. 1 we have 
empirically drawn on a complex plane, a set of isosceles right-angled 
triangles through the lattice points, each one enclosing the other in the 
form of shells. An even atomic number is associated with each point along 
the hypotenuse of the right-angled triangle and the vertex opposite it, 
Only even atomic number systems are considered, as in the present theory 
the spin of the system has not been specifically put in. In this way starting 
with 4He at the vertex of shell No. 1, it is seen that it is possible to reproduce 
the entire Bohr periodic table of elements. We note the following: 

(a) All the rare gases fall along the vertices of the triangles and the 
chemical similarities can be traced in exactly the same way as in the Bohr 
table of elements. 

Co) It is necessary to have two entries along the hypotenuse ofeach shell, 
or each shell can have a mirror reflection through the vertex. 

(c) Along the real axis, the length of the sides of the triangle in some 
arbitrary units are d = s • • which can be represented as 

A= ~ (2j+ 1)- 1 
Wherej  is an integer, s-I 

As shown earlier (Ramanna & Jyothi, 1969), and in Appendix II, the 
total interaction energy of a system is given by the Dirichlet integral 

Ea=ff lal' + Ib[2dxdt (20) 
D 

where D is the domain of the integral. 
For Eo r  E 2 to be minimum la] + ilbl and [a] - ilb[ have to be harmonic 

functions. Guided by the preceding discussion, we assume 

sn(4Kx igKt~dn(4___~ +i4Kt~ 
lal + ilbi = + nTo ] Xn ,, nTo 7 

(21) 
[a[_ilbl=sn(4Kx i4rt~dn(4Kx i4Kt~ 

Xnau To ] \n~u nTo ] 
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I . 

Figure I . --The periodic table of�9 obtained by arranging the even number atoms 
o~ the sides of  right angled ~ l e s  triangles on the complex plane. The Pauli principle 
appears as the exclusion of  more than one atom with real or imaginary position having 
the same domain width. The dotted-lines drawn vertically link up atoms with similar 

chemical properties. 

So that 

sJ (4,., . . , ,  . .x  
~ : :  " - -+ . .  -~- , )snt~ ~ S ~ + To S 

xdnl4~|.:.~._ i4Kt\ [4Kx\ /4Kt\ 

As we are concerned with systems in the ground state only, we have set 
n ~ 1 in (21) just as in eqvation (11). Due to the double periodicity of  the 
integrand, we can choose a characteristic time t = To such that 

a4Kt f sn2 4KX dnz 4Kx o(4Kx) (23) 
E2= O j To uu ~U ~u 
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Here Q is a constant with dimensions of square of  energy and D,, Dt are 
the space and time domains respectively. 

As already observed in the discussion following equation (! !), the very 
choice of  the integrand in equation (22) as a function of the type 

s n ( x + / t ) d n ( x  + it) 

implies that the integration is over an isosceles right-angied triangle. 
i f  the upper and lower limits of D, are X U and XL respectively 

QD,[(Xu - XL) - (sn X•cn X'udn Xu - sn XLcn XLdn XL)] (24) E2 

The integration of  sn2xdn2x depends on the path along which x varies 
and this gives rise to three cases: 

(i) The path of  integration is along the real axis; i.e. the domain-limits 
Xv, XL are real. 

('n') The path of  integration is along the imaginary axis; i.e. the domain- 
limits X,,., XL are pure imaginary. 

Oil') The path of  integration is along the h)votenuse of the isosceles 
right-angled triangle. 

Incase (i) the integrand sn"xdn2x has turning points whenever the domain- 
limit Jfu or XL is an odd multiple of K. At these points the integrand is a 
maximum and the system will be in a stable state whenever the domain- 
width D, is an odd multiple of  K. ]'he sum A, of real domain-widths is 
given by | 

- _:_ ~ D ,  a n d  d= ~" (2j+ I)K 
J-0 

where j, I are integers. 
The present theory deals with spin-less systems and as the first atom 

without spin is Helium, the domain-width corresponding to this atom has 
to be subtracted from .4 making the domain-width of Helium to be K. 
We therefore write 

A = ~ , ( 2 j + I ) K - - K ]  (25) 

wbere I ~  !, 2 or 3 a n d / =  1,2, 3. 
It is ~si ly verified from equation (25) that for ! = i, .4 ~ 2: for I = 2, 
= 7; and for l = 3, .4 = 14. It is seen thus, that the numbers 2, 7 and 14 

assumed empirically in Fig. I to correspond to the different shells come out 
to be the total domain-measures on the real line. 

In case ('n'), by symmetry considerations, we expect the system to be in a 
stable state whenever the domain-width is an odd multiple of K. The 
analysis is exactly the same as in case (i). 

In case (iii) the integrand sn2xdn2x has turning points whenever the 
domain- "!imit xL or Xv is an odd multiple of $,(K + iK). At these points the 
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integrand is a minimum and the system will be in a stable state if the 
domain-width is an integral multiple o f - K  + iK. 

An atom in its stable state is characterised by its average position and 
the domain width 3. The average position of  the atom is given by two 
parameters, the real part and the imaginary part. It is assumed that no two 
atoms can be fitted into domains of the same width unless the real and 
imaginary parts of their average positions are different and the shell 
structure arises because of the restriction that no two atoms can have the 
same three parameters, the real and imaginary parts of the average positions 
and the domain width. The above restriction can be considered as the 
geometrical equivalent of the Pauli principle which gives rise to a shell- 
behaviour in the usual quantum theory of atomic structure. 

Considering the cases (i), OiL (iii) together; we expect the system to be 
in a stable state for domain-widths which are either odd multiples of K or 
odd multiples of ( -K  + iK) corresponding to the following points of the 
complex plane: __ 

(a) (2 - j )  K +/jK, 0 < j  < 2 

Co) (7 - j )  g +/jK, 0 < j  < 7 06)  

(c) (14- j )K+ijK,  0 < j <  14 

The discussion following equation (24) remains valid when one replaces 
D, by - D ,  and D~ by -D, .  This means that in Fig. 1 we could have put 
the double entries like (4,12), (20,38) etc. on two triangular shells, one 
corresponding to D~, the other to -Ds  as shown by the dotted lines in 
Fig. 1. The points of the complex space enumerated in equation (26) lie in 
the form of shells along the sides of an isosceles right-angled triangle in 
the complex plane. The domain-lengths/9, corresponding to these points 
are measured continuously along the sides of the triangle and are terminated 
by one of  the points enumerated above. Since the values of Ds are integr',,! 
multiples of K, the second term of equation (24) vanishes and we can write 

E 2 = (0 /3)ID,  D.I (2~) 

This implies that 

iS = ,k/'(Q../3) ,v/(lDs D,[) -- "V'(Q/3) KIO[ (28) 

Here we have written IDsD, pIz=KIOI where �9 is a complex number 
associated with each permitted domain length corresponding to the selected 
point along the sides of the isosceles right-angled triangle. In order to get 
the energies of interaction in a linear order of the atomic weights, these 
points are mapped on to a real line by means of the Schwarz-Christoffel 
transformation of the triangle onto a real half-plane. This is done by first 
mapping the vertices to the points 0, 1 and ~o respectively on the real line 
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and then proceeding tO the O plane. This mapping is given by the following 
integrals: 

f + f + f " (a) (t 2 _ l)~, , (b) (l - t 2)3/, and (c) (1 + t2) '1" 
S .g  - - m  

The corresponding linear map to the 0 plane is given by 

(a) c o s 0 =  1 - C ( x  2 - 1) 
1 + 'V/(x 2 - 1)' 1 < x < oc 

1 
(b) c o s 0 = ( l _ C ) l / , ,  0 < x < l  

1 
(C) COS 0----- (1 + X2)1/4, --uc < X < 0  

depending on the side of  the triangle under consideration. We note that 
(a) corresponds to points on the hypotenuse. In Fig. 1 as one moves along 
OA from O to.4, 0 changes through an angle ~r/2. From A to B, the variation 
in 0is r and it is again ~,/2 from B to O. Thus the entire triangle is mapped 
as 0 moves through an angle of  2r 

The corresponding regions of  the mappings in the different space can 
be schematically expressed as follows: 

Complex space From O to A A to B B to O 
x-space 0 to 1 1 to oo oo to 0 

O-space (u/2)  (~r) (~r/2) 

The ~chwarz-mapping gives 

r = V'(2) ~ 1:(0, I 0 (29) 
4K 

where ,4 is the length of  the hypotenuse of  the triangle that is mapped. 
The constant Q in equation (23) as stated earlier has the dimensions of  
the square of  energy. 

We set Q = [Zm0C2u2] 2, where ZmoC 2 is the rest energy of  all the 
electrons in the system and ~, is the fine structure constant. This implies 
that the number E/ZmoC 2 which is also the average bifiding energy of  
each electron in the system in terms of  the rest energies, is a constant in 
each domain, the mean position of  which is given by one of  the allowed 
complex points and the distances in the complex plane are measured in 
terms of  a2, the square of  the fine structure constant. The above conformal 
transformation maps the complex points ff~ to 0 on a real line to give a 
linear ordering which in turn gives the energy in real space. 

From equation (29) we have 

E =  'v'(Q/3)ID+ D+I !/2 = x/(Q/3)4KI~b{ "= "~/(Q/3)Av'(2)F(O,K) (30) 
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Introducing the value of  Q 

E = V'(~) mo C'oc 2 dZF(O, K) 

E ( , , )  -= 22-20775 dZF(O, I0  

Since me C 2 ~2 = 27-2 ev. 
As the theory is applicable only to spinless systems, the binding energy 

of  the (He atom has to be removed from E. This is because the first triangle 
representing atoms lighter than 4He is a point and therefore is of  arbitrary 
measure. 

"the total binding.energy of  atoms is therefore given by 

Ea - Ea((He) = 22-20775 AZF(O, K) (31) 

We note that the length of  the hypotenuse 11 for the range of  2 < Z < 18 
is 2; for 18 < Z < 54 is 7 and for 54 < Z < 86 is 14 and the values of  Ea 

" are obtained from the following equations: 
For  

2 < Z <  I0, 

I O < Z  ~: 18, 

18 < Z < 36, 

36 < Z <  54, 

and 

Ea = E2 + 22"20775 x 2 x ZF(O, k) 
Ea = Elo + 22-20775 x 2 x ZF(O, k) 
Ea = Els + 22"20775 x 7 x ZF(O, k) 
Ea = E3~ + 22"20775 x 7 x ZF(O, k) 

(32) 

54 < Z <  86, Ea = Es4 + 22-20775 x 14xZF(O,k) 

The values ofEio, EIs, E36 and Es4 are obtained from the respective previous 
equations and Ez = EnQHe) = 78.884. 

In Table I the values of 0, F(O, k) and E for all even values of  Z are given. 
It is seen that the agreement with the few available experimental pointst - 
is within 3 ~ and the agreement with the perturbation theories (Foldy, 1951) 
is quite impressive, especially considering the fact that no arbitrary para- 
meters are used in the present theory. At the present moment, no experi- 
mental values are available for the total binding energies beyond Z - - 8 .  
A value of  this energy for some Z > 62 would provide a very good test 
for the theory. 

The theory deals with stable spinless systems. To extend the theory to 
systems with spin the Dirac equation will have to be used instead of the 
SchrSdinger equation. It may, however, be possible to introduce spin by 
using the third type elliptic integrals as solutions to the non-linear differential 
equation rather than the first type as suggested in an earlier paper (Ramanna, 
1968). 
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T A B L E  i .  E l e c t r o n - b i n d i n g  e n e r g y  v a l u e s  in  e l e c t r o n - v o l t s  o f  p r e s e n t  t h e o r y  c o m p a r e d  
-wi th  e x p e r i m e n t a l  v a l u e s ?  a n d  the  e x i s t i n g  c a l c u l a t e d  v a l u e s  b a s e d  o n  the  F e r m i - T h o m a s  

m o d e l  a n d  t h a t  d u e  t o  F o l d y  (1951) .  

-Fs ca l .  
E .  F e r m i -  ( p r e s e n t  

Z 0 F(O,k) E .  exp t l .  E .  F o l d y  T h o m a s  t h e o r y )  

2 " - 0 0 78"884 78"6i 79"274 78"884 
4 f/2 1"8541 399"033 400"30 399-520 408"300 
6 a" 3-7082 1029"805 1041"00 1029"000 1067.100 
8 3Tr/2 5-5623 2043" 189 2068-00 2013'400 2055.400 

2 I0 2,r - 7"4164 -- 3535"00 3388"900 3373"100 
12 5 = / 2  9"2705  - -  N 5 " ! 8 6  x los  8"314 x lo s  
14 3= 11-1246 -- -- 7"431 x IOS 1"029 x I0' 
16 7 ~ / 2  12"9787 - -  - -  1"015 x 104 1"260 x 104 
18 4 n  14"8328 - -  ~ i "336  x 104 1"523 x lo s  

20 ~]2 ' 1"8541 -- 1"833 • 104 1"708 x 104 2"100 • IOS 
2 2  917/14 2"3157  - -  - -  2"133 x 104 2"315 x 104 
2 4  11~114 2"8032  - -  - -  2"614  x 104 2"569 • 104 
2 6  131r/14 3"3900  ~ - -  3 " ! 5 0  x I 0 '  2"893 x 104 
2 8  15 , r /14  3"9361 ~ - -  3 ' 7 4 5  • 104 3"237 x 104 
3 0  17=r114 4"3959  ~ 4"811 • l o s  4"399  x 104 3"573 x 104 
32  19"#/14 4"9400  ~ - -  5 " ! ! 4  x 10" 3"981 x 104 

7 34 3~r/2 5"5623 ~ -- 5"891 x I04 4'463 x 104 
3 6  2 ~  7"4164  - -  - -  6"731 x 1 0 '  5"674 x 104 
38 5 ~ / 2  9"2705  - -  N 7"636 x 1 0 '  I ' 1 1 5  x l 0  s 
4 0  3 7 ~ / 1 4  9"7321 - -  9"590  • 104 8"607 x 104 1"173 • l 0  s 
4 2  39r t /14  10"2196 - -  ~ 9"645 x 104 1"235 • IO s 
44 41~I14 10-8064 -- -- 1"075 x IO s 1"307 x IOS 
4 6  43zr /14  ! ! " 3 5 2 5  ~ - -  ! " i 9 3  x i 0  s ! "379  • lO s 
4 8  45~114  ! 1"8123 m ~ ! "317  x l 0  s i "449  x l 0  s 
5 0  47rr114 12"3564 m i "637  x los  1"449 x IO s 1"528 x iO s 
5 2  7~12 12"9787 - -  - -  1"588 x l 0  s 1"617 • l o s  
5 4  4"a" 14"8328 - -  - -  1"734 x lo s  ! "818  • l 0  s 

5 6  a ' ~  !"8541 - -  ~ ! "887  x l 0  s 2"135 • l 0  s 
5 8  8 = / 1 4  2 " 0 8 2 0  - -  - -  2"048 x lo s  2"188  x l 0  s 
60 9~r114 2"3157  - -  2"532 x IO s 2"217  x lo s  2"245 • los  
6 2  IOr t l l 4  2"5612  ~ ~ 2"393 x IO s 2"306  • lO s 
6 4  I 1 ~ / 1 4  2"8032  ~ - -  2"577  x l o s  2"370  x l 0  s 
66 12~114 3"0859 - -  - -  2"769  • l o s  2"446  x IO s 

14 6 8  1 3 ~ / 1 4  3"3900  - -  - -  2"969  x lo s  2"529  x lo s  
70 lr 3"7082  - -  3"663 x los  3"177 x los  2"620  x l 0  s 
7 2  15~r114 3"9361 ~ ~ 3"392 • los  2"694 x IO s 
7 4  16rrI14 4 " ! 6 9 8  - -  - -  3"616 x l o s  2"772 x IO s 
76 17, r /14  4"3959  ~ ~ 3"849 x IOS 2"851 • l 0  s 
78 18rr /14 4"6573  - -  ~ 4"089  • l 0  s 2"942 • l 0  s 
8 0  19~'.,'14 4 - 9 4 0 0  - -  5"049 • l 0  s 4"338 x l 0  s 3"041 • l o s  
8 2  2 0 ~ / 1 4  5"2441 - -  - -  4"595 • l o s  3"150 x i 0  s 
84 3~12 5"5623 -- ~ 4"861 x IO s 3"265 x IO s 

8 6  2~" 7"4164  ~ a 5"135 x lo s  3"796 • 10" 

t C.R.C. Handbook of Chemistry and Physics, 50 th  E d i t i o n  ( 1 9 6 9 - 7 0 ) .  
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Appendix 1 

Using the coordinate transformation of the (x~,t,) into (xt,tl) as 
prescribed in (3) and transforming equation (2) to the (xt, h) system, we get 

~§ a@,r2 a., ~ q l  ao~ i ap ~p 2mziqc] 2q ~2@, 

-F q2 a: f t  . ~,r2.q| ao~ 2q: 1 Ow q ap I ap 2mzi ] 

2mzqciX ! ~o,! q Op 1 Op 2m~ii 2mzV~l 

Comparing this with the Schr&linger equation: 

+ ---~- r ,  r = 
ax  ~ 2 li at ~ 

we find that in the overlap region, the following relations hold: 

~ , [ 2  ao, + 2,1 i a~, i al, . q ap 2m, qic l 
m,,t,.a~, p~, . ,at ,+~, , *~-~,  + h,~ j 

2,1 a~+, + q~ a~,=0 (AZ.2) 

l a2m 2ql a2r q2 l a2m l ao, l l  ap q ap 2mzqci| ~a-~,,~4,~,a.,~,~,,' ~a,,,m,~ + ~ , / ~  +p-~,  + - 6 ~ j  

l ~ l  q ae ! ae 2~,q ~p~ 
Z.,~-~|~-~-c~-x-~x ' .m.2a, ,~p J+ (m2V,-m,p2V,)=O (AI.3) 

2 q l a w  i 2q 2 ! ~cot q ap ! ap 2mzi = - 2 m  I .  i (Al.4a)  
pcmSx I p2c2mat i p2caxl pc2att lip h 

In a time-independent case ~m]att = O. From (AI.4a) it follows that 

i~ , ,  l ap  l a p  +c 
o, axi +~,ax, ~ca ,  =.~(m2-m,p) (AI.4b) 

2ql ~ . q ap 1 ~p 2i ~ , ~ , + ~ ,  pa~,,=~ (m~-m,p) (Ai.@) 
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Differentiating (AI.4b) with respect to xi, and (AI.4c) with reference to t, 
and adding we get 

l ~ , + 2 q l  ~ I ( a ~  2 a ~ i l a p  _q ap~ 

I ~p ! (ap~ m,t~ ap 

+ l -  ~ c  q ~ ~ e  -. 2q op0p 

i ~p 2im~ap 
+ ~ , ( m ~ - , , , , z , ) -  ~ at, 

Introducing in (A!~) we get 

I tOoJ~z 1 2 ~ [ l ~ p  + q q_~p_t2mzqci 2Op 2qO,} 
o~l~)x,,I + ~ x z i p P ,  x--z p2catl lip'* p ~ x l + c ~ n  

1 i~p~2 1 aZp pZ_~,i~p~Z I aep 2q ap ~p 

+ ~ n  (m~-mip)- liq Oxi tip20t--li + .~-c cp2/Ox, ati 
2 

§ ~ (m z V z - -  m n p  ~ V , )  = 0 (AI.Sa) 

Eliminating ~m.~xz using (AI.4b), we get, after some simplification, 

i__i_l~p~" I ~p  . c~(m~--mlp) 
41p~ ~xz ] 2p~x~ l- ~ / ~  {m,p~ - m2(~ -t- 2q2)} 

2 /cap l ~ p  
+ ~ (mz Vz -- m, pZ V,) + ~ q  ~ ,  {ml/73 -- mz(2P ~ + q ~)} + PC ~ 0t2 

~,~-q '  ~, v~ . 3f+~q~l~e~ ~ . f - ~ q ~  a~ 

az, 
?q~Tq z ~ {mr p(?4~ + 3q 2) _ 2m_.(f + q2)} = 0 (AI.5b) 

We assume that in a time-independent case 

pc'at? " ' ~  X~! ~ ' c  a.,a,, t ~qfc ~x,~t, 
az, 

/V,~q ~ ~, {,.,p(~" + 3q ~) - 2m~(f +q~)} = o 
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so that (AI.Sb) is equivalent to 

2 ic ~ p .  3 2 
+ h-i-~(mz V 2 -- m ,p  ~ V,) ~ h~qa-xi {mlP - mz(2p + qZ)} = 0 (AI.Sc) 

If  further the potentials are real, viz., m~p3=m~(2p2+q 2) then from 
(AI.Sc) we get 

~p i{ap~, 2c'(m,-mw),_., 
P ~ -  ~ [Fx~] - ~ ~,,,, e - m z ( f  + 2q2)} 

A I  

~ ~2 (m2 r2 - m , f  r,) 

which is equation (7) of the paper. 

Appendix 2 

We now show that the choice of  harmonic functions for the coordinate 
transformation automatically minimises the total energy of the systems 
described by Schr~linger equations. This is done in an elegant manner by 
resorting to the calculus of differential forms and to the Dirichlet principle. 
The energy of the systems are found directly without a knowledge of 4, 
the state-function. 

I f  w I ~ aidxi + bldti, wz = a~dxz + bzdt2 are two differential forms of 
order one defined in two overlapping domains hi, hz over a Riemann surface 
then from the calculus of differential forms (Ahlfors & Sario, 1960), it 
follows that the complex functions at, hi, a2, b2 of the coordinates (xt,t,) 
and (xz, tz) respectively are connected by the following relations. 

8xa L 8tz 

�9 axz at2 
b, ,~ o, ~i-~ + b2 ~ 

(A2.1) 

and 
- _ ax2 at2 

~Xz + at, 
( ~ . 2 )  
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A one-form in general is of the form o, = adx + bdt and its exterior deriva- 
tive is given by 

do, lab aa\ 

The differential form oJ is said to be closed if do, = 0. The invariance of a 
differential form oJ under coordinate transformations implies the invariance 
of  the conjugate differential co* defined by o,* = - b d x  + adt; the complex 
conjugate of the conjugate differential is (o* = - b d x  + adt where a and 
are complex conjugates of a and b respectively. The integral I defined by 
the equation 

t= f,o~,* L f (lal = + Ibl2)dxdt (A2.3) 
D D 

is finite and positive. This can be seen to be a Dirichlet integral and by 
Dirichlet principle it takes a minimum value when the integrand la[ 2 + [b]-" 
isa harmonic function. The type of functions the integrand can take depends 
on the Riemann manifold chosen, i.e. one gets spherical harmonics if the 
Riemann surface is that of the sphere, doubly-periodic functions (elliptic 
integrals) if the surface is that of a torus and other meromorphic functions 
for higher, punctured surfaces. The Dirichlet principle also ensures that 
this integral is invariant under conformal transformations. 

We now write a set of Schr6dinger equations and their complex conjugates 
into their respective differential forms and compare with the differential 
forms da,, d~* defined above. 

The Schr&tinger equation can be written as 

O~(x, t) = 0 (A2.4) =~o0 ~x,  t ) -  ih at 

where ~(x,t) is a complex-valued function of space x and time t and Hop 
is the energy operator. 

Comparing (A2.4) with the closed differential form do,, we find that 

8b 0a 
~ Hoo ~(x,  t)  = - Bx 

( A 2 . ~  

If  similarly one compares the conjugate equation of the Schr0dinger 
equation with the closed differential form d~*, we find that 

Ox 0t 
(A2.6) 

where [Hop ~(x, t)]* is the complex conjugate of [Hop~(x, t)]. 
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From (A2.5) and (A2.6) we find after integration that 

a= f n.~ Oax +:.it) 

n = f . tH,,  ~(x, t)]* dt +A(x) 

b ,= f Hoo~(x, t)dt +A(x) 

b = f [H** r t)]* dx +fdt) 

Since aa and bb have to be real, one writes 

f.(i) -- f Hoo~(x,t)at, 

fo(x) = f Xoo~,(x, Oax, 

From (A2.7) and (A2.8) it follows that 

ad + b~ = 2[(f Hop~(x,t)dx)(f {Hop ~(x, t)}* ~ 

+ (f Ho.~.,)a,)(f Wo,:<x, 0~*al)] 

The positive square root of the integral 

l =  f [al = + IblZdxdt 

i.e. the norm [[oJl[ gives the interaction energy E within a domain, 
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(A2.7) 

f~(x) = complex conjugate off no,~(x,l)dx 
(A2.S) 

A(x) = complex conjugate off no,4(x, 0 at 

(A2.9) 
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